

Current docs (work-in-progress)

The following in-progress documents are written for early adopters
and contributors, MUA developers and privacy enthusiasts.

	Introducing Autocrypt: E-Mail Encryption for Everyone

	introduction to why Autocrypt exists and why it is trying
to achieve more e-mail encryption.

	Autocrypt features

	discusses how the Autocrypt efforts is different from past
e2e encryption efforts.

	Example Data Flows and State Transitions

	Example data flows and MUA state transitions. This may be the
easiest place to get started with the concrete ideas behind
Autocrypt.

	Guidance for Implementers of Autocrypt Level 0

	Minimum requirements and implementer guidance for Level 0
Autocrypt-capable MUAs.

	Interoperability With Other Cryptographic E-mail Mechanisms

	Guidance for integrating Autocrypt with other e-mail encryption
mechanisms and UI for existing MUAs.

	Future Enhancements to Autocrypt

	Future improvements for Autocrypt, beyond Level 0.

	Potential ecosystem dangers of Autocrypt

	Some documented risks and dangers to the mail ecosystem,
related to Autocrypt.

Frequently Asked Questions about Autocrypt

Glossary

Introducing Autocrypt: E-Mail Encryption for Everyone

If users ask how they can secure their e-mail the answer
should be as simple as: use an Autocrypt-enabled mail app!

Why improve e-mail? E-Mail has been declared dead many times but
refuses to die. It remains the largest open federated identity and
messaging eco-system, anchors the web, mobiles and continues to relay
sensitive information between citizens and organisations. It has
problems but do you prefer the proprietary, easy-to-track mobile phone
number system to become the single source of digital identification?

Why a new approach to e-mail encryption? Encrypted e-mail has been
around for decades, but has failed to see wide adoption outside of
specialist communities, in large part because of difficulties with user
experience and certification models. Autocrypt first aims to provide
convenient encryption that is neither perfect nor as secure as
traditional e-mail encryption, but is convenient enough for
much wider adoption.

The social Autocrypt approach

The Autocrypt project is driven by a diverse group mail of app developers,
hackers and researchers who are willing to take fresh approaches, learn from
past mistakes, and collectively aim to increase the overall encryption
of e-mail in the net. The group effort was born and named “Autocrypt”
on December 17th 2016 by ~20 people during a 5-day meeting at the
OnionSpace in Berlin. It’s a dynamic, fun process which is open to
new people, influences and contributions. See contact channels
and upcoming events on how you may talk with us and who
“we” are currently.

The technical Autocrypt approach

Autocrypt uses regular e-mail messages between people to piggyback
necessary information to allow encrypting subsequent messages.
Under the hood, Autocrypt uses e-mail headers for this information
transfer. By default, no key management is visible to users.
See Autocrypt features for more technical and UI cornerstones.

We are establishing this approach step-by-step using different “Levels”
of implementation compliance. We are currently documenting Level
0, which we aim to see supported in Spring of 2017 by various
mailers.

See Current docs (work-in-progress) for an index of all docs and discussion results so far.

Autocrypt features

End-to-end encrypted e-mail has been around for decades, but has failed
to see wide adoption outside of specialist communities, in large part
because of difficulties with user experience and certification models.
To better understand how the Autocrypt effort is different
from previous ones here are some of its features:

	Protect first against passive data-collecting adversaries,
resist the temptation to early-add complexity which aim to
prevent active attacks. See RFC7435 A New Perspective [https://tools.ietf.org/html/rfc7435#section-1.2] for some
motivation of this and the next points.

	Focus on incremental deployment, always consider that there
will be both Autocrypt-enabled mail apps and traditional plain ones,
interacting with each other.

	Don’t ask users anything about keys, ever. And minimize and
usability-test what needs to be decided by users and include
resulting UI guidance in the specs. Minimize friction for people
using multiple mail apps with their accounts.

	Go for mail app changes only, don’t require changes from mail
providers or depend on third party services, allowing fluid development
of deployable code and specs.

	Use decentralized, in-band key discovery. Make mail apps
tell each other how and when to encrypt to each other
by attaching neccessary information along with mails.

	Implement and specify “Level 0” support in several mail apps in spring
2017. Keep Level 0 minimal enough that it’s easy for developers to
adopt it and we can start to drive efforts from real-life experiences.
Please see Guidance for Implementers of Autocrypt Level 0.

Channels

If you want to help, including offering constructive criticism,
you may:

	join the Autocrypt mailing list [https://lists.mayfirst.org/mailman/listinfo/autocrypt]

	join chats at #autocrypt on freenode or matrix.org.

	collaborate through PRs, issues and edits on our
github Autocrypt repo [https://github.com/autocrypt/autocrypt]

Currently involved are developers from K9/Android [https://k9mail.github.io/],
OpenKeyChain/Android [https://www.openkeychain.org/], Enigmail [https://enigmail.net/], Mailpile [https://mailpile.is/], Bitmask/LEAP [https://leap.se/en/docs/client] as
well as people from the nextleap [https://nextleap.eu], enzevalos [https://www.inf.fu-berlin.de/groups/ag-si/enzevalos.html] research projects
and the ACLU [https://www.aclu.org/].

Upcoming events

	Dec 2016: at 33c3 [https://events.ccc.de/congress/2016/wiki/Main_Page], Hamburg, scheduled talk at the
We Fix the Net [https://events.ccc.de/congress/2016/wiki/Session:We_Fix_the_Net] session and probably another separate one.

	Jan 2017: a prospective lightning talk from dkg at
RealWorldCrypto 2017 [http://www.realworldcrypto.com/rwc2017] in New york

	Mar 2017: Autocrypt sessions at the Internet Freedom Festival [https://internetfreedomfestival.org/]
with hackers and users, several Autocrypt-people there.

	April/May 2017: next Autocrypt unconf-hackathon planned roughly
around DE/NL/CH

Example Data Flows and State Transitions

Autocrypt key discovery happens through headers of mail messages sent
between mail apps. Similar to TLS’s machine to machine handshake,
users first need to have a cleartext mail exchange. Subsequent mails
from the receiving peer will may then be encrypted. Mail apps show
encryptability to their users at “compose-mail” time and give them a
choice of encryption or cleartext, defaulting to what the other side
has specified in their header.

These examples try to walk a new reader through the basic flow.

Note

Autocrypt key discovery is safe only against passive
eavesdroppers. It is trivial for providers to perform active
downgrade or man-in-the-middle attacks on Autocrypt’s key
discovery. Users may, however, detect such tampering if they
verify their keys out-of-band at some later point in time. We hope
this possiblity will keep most providers honest or at least prevent
them from performing active attacks on a massive scale.

Please also see https://github.com/autocrypt/autocrypt/tree/master/src/tests/data
for specific examples of Autocrypt messages.

Contents

	Example Data Flows and State Transitions
	Basic network protocol flow

	“Happy path” example: 1:1 communication

	Group mail communication (1:N)

	Losing access to decryption key

	Downgrading / switch to a MUA without Autocrypt support

Basic network protocol flow

Establishing encryption happens as a side effect when people send each other mail:

	A MUA (mail user agent) always adds an Autocrypt: header to all messages it
sends out.

The autocrypt header contains all necessary information to allow encryption
(especially the key; see Deriving a Parsed Autocrypt Header from a Message for the format in detail).

	A MUA will scan incoming mails for encryption headers and associate
the info with a canonicalized version of the From: address contained
in the RFC 822 [https://tools.ietf.org/html/rfc822.html] message.

	A MUA will encrypt a message if it earlier saw encryption keys
(and the request to encrypt) for all recipients.

“Happy path” example: 1:1 communication

[image: _images/autocrypthappy.svg]Consider a blank state and a first outgoing message from Alice to Bob:

From: alice@a.example
To: bob@b.example
...

Upon sending this mail, Alice’s MUA will add a header which contains her
encryption key:

Autocrypt: to=alice@a.example; type=p; prefer-encrypted=yes; key=...

Bob’s MUA will scan the incoming mail, find Alice’s key and store it associated
to the alice@a.example address taken from the to-attribute.
When Bob now composes a mail to Alice his MUA will find the key and signal to
Bob that the mail will be encrypted and after finalization of the mail encrypt
it. Moreover, Bob’s MUA will add its own Encryption Info:

Autocrypt: to=bob@b.example; type=p; prefer-encrypted=yes; key=...

When Alice’s MUA now scans the incoming mail from Bob it will store
Bob’s key and the fact that Bob sent an encrypted mail. Subsequently
both Alice and Bob will have their MUAs encrypt mails to each other.

If prefer-encrypted is sent as ‘yes’ the MUA MUST default to encrypting
the next e-mail. If it is set as ‘no’ the MUA MUST default to plaintext.
If prefer-encrypted is not sent the MUA should stick to what it was doing
before. If the attribute has never been sent it’s up to the MUA to decide. The
save way to go about it is to default to plaintext to make sure the recipient
can read the e-mail.

We encourage MUA developers to propose heuristics for handling the undirected
case. We will document the best approaches to develop a shared understanding.

Group mail communication (1:N)

Consider a blank state and a first outgoing message from Alice to Bob
and Carol. Alice’s MUA add a header just like in the 1:1 case so
that Bob and Carol’s MUA will learn Alice’s key. After Bob and Carol
have each replied once, all MUAs will have appropriate keys for
encrypting the group communication.

It is possible that an encrypted mail is replied to in cleartext (unencrypted).
For example, consider this mail flow:

Alice -> Bob, Carol
Bob -> Alice, Carol
Carol -> Alice (not to Bob!)

Alice and Carol have now all encryption keys but Bob only has Alice’s
because he never saw a mail from Carol. Alice can now send an encrypted
mail to Bob and Carol but Bub will not be able to respond encrypted
before his MUA has seen a mail from Carol. This is fine because Autocrypt
is about opportunistic encryption, i.e. encrypt if possible and
otherwise don’t get in the way of users.

Losing access to decryption key

If Alice loses access to her decryption secret:

	she lets her MUA generate a new key

	her MUA will add an Encryption-Info header containing the new key with each mail

	receiving MUAs will replace the old key with the new key

Meanwhile, if Bob sends Alice a mail encrypted to the old key she will
not be able tor ead it. After she responds (e.g. with “Hey, can’t read
your mail”) Bob’s MUA will see the new key and subsequently use it.

Todo

Check if we can encrypt a mime mail such that non-decrypt-capable clients
will show a message that helps Alice to reply in the suggested way. We don’t
want people to read handbooks before using Autocrypt so any guidance we can
“automatically” provide in case of errors is good.

Note

Unless we can get perfect recoverability (also for device loss etc.) we will
always have to consider this “fatal” case of losing a secret key and how
users can deal with it. Especially in the federated e-mail context We do
not think perfect recoverability is feasible.

Downgrading / switch to a MUA without Autocrypt support

Alice might decide to switch to a different MUA which does not support Autocrypt.

A MUA which previously saw an Autocrypt header and/or encryption from Alice
now sees an unencrypted mail from Alice and no encryption header. This
will disable encryption to Alice for subsequent mails.

Guidance for Implementers of Autocrypt Level 0

This document describes the basic capabilities required for a MUA to
be Autocrypt-capable at Level 0. Some Autocrypt-capable clients may
choose to go beyond these features, and future Levels of Autocrypt may
require more specific control.

Throughout this document, we refer to a Mail User Agent (MUA) as
though it was only capable of controlling a single e-mail account. A
MUA that is capable of connecting to multiple e-mail accounts should
have a separate Autocrypt state for each e-mail account it has access
to.

Contents

	Guidance for Implementers of Autocrypt Level 0
	Requirements on MUA/E-mail Provider interactions

	Secret key generation and storage

	Claiming the Account

	Header injection in outbound mail

	Deriving a Parsed Autocrypt Header from a Message
	type=p: OpenPGP Based key data

	Internal state storage

	Updating internal state upon message receipt

	Provide a recommendation for message encryption
	Recommendations for single-recipient messages

	Recommendations for messages to multiple addresses

	Encrypt outbound mail as requested

	Specific User Interface Elements
	Account Preferences

	Message Composition

Requirements on MUA/E-mail Provider interactions

Autocrypt tries to impose minimal requirements on how MUAs and
e-mail services interact. We assume that an Autocrypt-capable MUA
has credentials and capabilities to perform these network services:

	The ability to send e-mail (e.g. via SMTP or Submission) where the
MUA can control the entire message being sent, including both
message headers and message body.

	The ability to receive e-mail where the MUA gets access to
the entire message being received, including both message
headers and message body.

	Access to a special (IMAP) Shared Message Archive (SMA) folder which
can be accessed by all MUAs of a user’s devices to co-ordinate
between them. In Level 0 this is only used for ensuring that only
one MUA has Autocrypt enabled for an e-mail account at once.

If a particular e-mail account does not expose these features
(e.g. if it only exposes a javascript-driven web interface for message
composition that does not allow setting of e-mail headers, or if it
only offers POP access to the incoming mail) then the e-mail account
cannot be used with Autocrypt. An Autocrypt-capable MUA may still
access and control the account, but it will not be able to enable
Autocrypt on it.

Todo

Discuss with webmail developers how to work with, refine
the interactions.

Secret key generation and storage

The MUA MUST be capable of generating and storing two RSA 2048-bit
secret keys, one for signing and self-certification and the other for
decrypting. It MUST be capable of assembling these keys into an
OpenPGP certificate (RFC 4880 “Transferable Public Key”) that
indicates these capabilities.

These secret keys MUST be protected from access by other applications
or co-tenants of the device at least as well as the passwords the MUA
retains for the user’s IMAP or SMTP accounts. These secret keys MUST
never be sent over the wire to any other party.

When an Autocrypt-enabled MUA configures an e-mail account, it should
generate these keys and store them locally. Then it should proceed to
try to “claim” the account to lock out other MUAs of the
same users. In Level 0 only one MUA can send and receive encrypted
mail through Autocrypt mechanisms.

Claiming the Account

Only one Level 0 MUA can have Autocrypt enabled for a given account at
a time. The Autocrypt-enabled MUA “claims” the account so that others
disable their Autocrypt features.

The Shared Mail Archive MUST contain a named location mechanism that
all other Autocrypt clients can see. For example, an IMAP mailbox
would have a named folder. Autocrypt uses the special name
_autocrypt_sma to store “claim” announcements.

The MUA looks in the special location for a message whose form matches
the standard claim announcement and is valid. If such a message is
present, the MUA disables its Autocrypt features for this account.

If the special location does not exist, or it exists, but there are no
valid claim announcements in it, the MUA crafts its own claim
announcement and places it in the special location.

Todo

	Document the claim announcement format

	Clarify concerns about race conditions, case-sensitivity, etc.

Header injection in outbound mail

During message composition where the message will be marked as
From: an e-mail address that the Autocrypt-capable agent knows the
secret key material for, it should always include an Autocrypt header
with the associated public key material as the key= attribute, and
it should include the to= attribute for recipients to match
on. The most minimal Level 0 MUA will only include these two
attributes.

If the From: address changes during message composition (e.g. if
the user selects a different outbound identity, the Autocrypt-capable
client MUST change the Autocrypt: header.

See “Happy path” example: 1:1 communication for examples of outbound headers and
the following sections for header format definitions and parsing.

Deriving a Parsed Autocrypt Header from a Message

The Autocrypt: header MUST have the following format:

Autocrypt: to=a@b.example.org; [type=(p|_*);] [prefer-encrypted=(yes|no);] key=BASE64

Where the value of key includes a Base64 representation of a
minimal key. For now we only support p as the type, which
represents a specific subset of OpenPGP (see the the next section).
key MUST be the last attribute.

prefer-encrypted indicates that agents should default to
encrypting when composing e-mails to this recipient.
If prefer-encrypted is not set,
the value of prefer-encrypted is nopreference.
If prefer-encrypted is set, but neither yes nor no,
the MUA must skip the header as invalid.

Additional attributes unspecified here are also possible before the
key attribute. If a MUA encounters an unknown attribute, if the
attribute name starts with an underscore (_), this is a
“non-critical” attribute. The MUA MUST ignore the non-critical
attribute and continue parsing the header. If the unknown attribute
name does not start with an underscore, it is a “critical”
attribute, and the MUA must skip the header as invalid.

If a Level 0 MUA encounters an otherwise-valid header which has
type set to something other than p it MUST skip the header as
invalid.

When parsing an incoming message, a Level 0 MUA MUST examine all
headers with the name Autocrypt: and collect all valid headers in a
list. If the list of valid headers has more than one entry, it should
be treated as 0 valid headers (that is, it should return null).

type=p: OpenPGP Based key data

For maximum interoperability and sanity a certificate sent by an
Autocrypt-enabled Level 0 MUA MUST send an OpenPGP “Transferable
Public Key” (see RFC 4880 §11.1 [https://tools.ietf.org/html/rfc4880#section-11.1])
containing exactly these five OpenPGP packets:

	a primary key Kp

	a uid that SHOULD be set to the e-mail address of the account

	a self signature

	an encryption-capable subkey Ke

	a binding signature over Ke by Kp

These packets should be assembled in binary format (not
ASCII-armored), and then base64-encoded. During interpretation,
whitespace should be stripped before base64-decoding.

A Level 0 MUA MUST be capable of processing and handling 2048-bit RSA
keys. It SHOULD be capable of handling Curve 25519 keys (ed25519 for
Kp and cv25519 for Ke), but some underlying toolkits may not
yet support Curve 25519.

Internal state storage

Note

You should be familiar with “Happy path” example: 1:1 communication before reading the
following.

If a remote peer disables Autocrypt or drops back to using a
non-Autocrypt MUA only we must be able to disable sending encrypted
mails to this peer automatically. MUAs capable of Autocrypt level 0
therefore MUST store state about the capabilities of their remote peers.

Agents MAY also store additional
information gathered for heuristic purposes, or for other
cryptographic schemes. However, in order to support future syncing of
Autocrypt state between agents, it is critical that Autocrypt-capable
agents maintain the state specified here.

Conceptually, we represent this state as a table named
autocrypt_peer_state indexed by the peer’s canonicalized
e-mail address and key type. In level 0,
there is only one type, p, so level 0 agents can implement this by
indexing only the peer’s e-mail address.

For each e-mail and type, an Agent MUST store the following
attributes:

	pah: Parsed Autocrypt header, which could be null

	changed: UTC Timestamp when pah was last changed

	last_seen: Most recent UTC time that pah was confirmed

Autocrypt-compatible agents SHOULD track and store in
autocrypt_peer_state a parsed interpretation pah, which is not
necessarily the literal header emitted (for the literal header, see
next section). The pah MUST contain the following fields:

	key – the raw key material, after base64 decoding

	prefer_encrypted – a tri-state: nopreference, yes, or no

Updating internal state upon message receipt

When first encountering an incoming e-mail M from an e-mail address A,
the MUA should follow the following autocrypt_update algorithm:

	Set a local message_date to the Date: header of M.

	If message_date is in the future, set message_date to the
current time.

Todo

This implies that Autocrypt clients keep track of whether they have
encountered a given message before, but does not provide them with
guidance on how to do so. Message-ID? Digest of full message
body? The consequences of re-triggering the message receipt
process should only matter for messages that are erroneously marked
with a future date. Another approach that would not require keeping
track of the message would be to simply ignore messages whose
`Date: header is in the future.

	Set a local message_pah to be the Autocrypt: header in M. This is
either a single Parsed Autocrypt header, or null.

	If message_pah is null, and the MUA knows about additional
OpenPGP keys, then we replace message_pah with a
synthesized_pah generated from the message itself:

	If the message is not cryptographically signed, or there is an
unverifiable or invalid message signature, synthesized_pah is
null.

	Alternately, the message is cryptographically signed, and the
signature is verified and comes from a known OpenPGP certificate
K: If K is not encryption-capable (i.e. if the primary
key has no encryption-capabilities marked, and no valid subkeys
are encryption-capable), or if K does not have an OpenPGP User ID
which contains the e-mail address in the message’s From:,
then synthesized_pah is also null. Otherwise, with an
encryption-capable K, the key element of
synthesized_pah is set to K. In this case, the
prefer_encrypted element of synthesized_pah is set based
on whether the message is also encrypted in addition to being
signed. If the message is encrypted, then prefer_encrypted
is set to yes. If it is not encrypted, then
prefer_encrypted is set to nopreference.

Note

We do not synthesize the Autocrypt header from any
application/pgp-keys message parts. This is because it’s
possible that an attached OpenPGP key is not intended to be the
sender’s OpenPGP key. For example, Alice might send Bob Carol’s
OpenPGP key in an attachment, but Bob should not interpret it as
Carol’s key.

Todo

Maybe move synthesized_pah into Interoperability With Other Cryptographic E-mail Mechanisms ?

	Note: The agent continues this message receipt process even when
message_pah is null, since updating the stored state with
null is sometimes the correct action.

	Next, the agent compares the message_pah with the pah stored in
autocrypt_peer_state[A].

	If autocrypt_peer_state has no record at all for address A,
the MUA sets autocrypt_peer_state[A] such that pah is
message_pah and changed and last_seen are both
message_date, and then terminates this receipt process.

	If autocrypt_peer_state[A] has last_seen greater than or
equal to message_date, then the agent stores message_pah
and terminates this receipt process, since it already knows about
something more recent. For example, this might be if mail is
delivered out of order, or if an inbox is scanned from newest to
oldest.

	If autocrypt_peer_state[A] has a last_seen less than
message_date, then we compare message_pah with the pah
currently stored in autocrypt_peer_state[A].

This is done as a literal comparison using only the key and
prefer_encrypt fields, even if the Agent stores additional
fields as an augmentation, as follows:

	If key is bytewise different, or if prefer_encrypted has a different value,
then this is an update.

	If key and prefer_encrypted match exactly, then it is considered a match.

	If both pah and message_pah are null, it is a match.

	If one is null and the other is not null, it is a update.

	In the case of a match,
set autocrypt_peer_state[A].last_seen to message_date.

	In the case of an update,
set autocrypt_peer_state[A].pah to message_pah and
autocrypt_peer_state[A].last_seen and
autocrypt_peer_state[A].changed to message_date.

Note

The above algorithm results in a non-deterministic
autocrypt_peer_state if two Autocrypt headers are processed
using the same message_date (depending on which message is
encountered first). For consistency and predictability across
implementations, it would be better to have a strict ordering
between parsed Autocrypt headers, and to always select the lower
header in case of equal values of message_date.

Note

OpenPGP’s composable certificate format suggests that there could
be alternate ways to compare key values besides strict bytewise
comparison. For example, this could be done by comparing only the
fingerprint of the OpenPGP primary key instead of the keydata.
However, this would miss updates of the encryption-capable subkey,
or updates to the capabilities advertised in the OpenPGP
self-signature. Alternately, the message receipt process could
incorporate fancier date comparisons by integrating the timestamps
within the OpenPGP messages during the date comparison step. For
simplicity and ease of implementation, level 0 Autocrypt-capable
agents are expected to avoid these approaches and to do full
bytestring comparisons of key data instead.

Todo

the spec currently doesn’t say how to integrate Autocrypt
processing on message receipt with spam filtering. Should we say
something about not doing Autocrypt processing on message receipt
if the message is believed to be spam?

Provide a recommendation for message encryption

On message composition, an Autocrypt-capable agent also has an
opportunity to decide whether to try to encrypt an e-mail. Autocrypt
aims to provide a reasonable recommendation for the agent.

Any Autocrypt-capable agent may have other means for making this
decision outside of Autocrypt (see Interoperability With Other Cryptographic E-mail Mechanisms).
Autocrypt provides a recommendation to this process, but there is no
requirement for Autocrypt-capable agents to always follow the
Autocrypt recommendation.

That said, all Autocrypt-capable agents should be able to calculate
the same Autocrypt recommendation due to their internal state.

The Autocrypt recommendation depends on the list of recipient
addresses for the message being composed. When the user edits the
list of recipients, the recommendation may change. The MUA should
reflect this change.

Note

It’s possible that the user manually overriddes the Autocrypt
recommendation and then edits the list of recipients. The MUA
SHOULD retain the user’s manual choices for a given message even if
the Autcrypt recommendation changes.

Todo

Discuss how to deal with the case where the user manually selects
encryption and subsequently adds a recipient whom the MUA has no
key.

Autocrypt can produce three possible recommendations to the agent
during message composition:

	disable: Disable or hide any UI that would allow the user to
choose to encrypt the message. Prepare the message in cleartext.

	available: Enable UI that would allow the user to choose to
encrypt the message, but do not default to encryption. Prepare the
message in cleartext.

	encrypt : Enable UI that would allow the user to choose to send
the message in cleartext, and default to encryption. Prepare the
message as an encrypted message.

Todo

The Autocrypt recommendation should probably change depending on
whether the mail is a reply to an encrypted e-mail or not.

Recommendations for single-recipient messages

For level 0 MUAs, the Autocrypt recommendation for message composed to
a single recipient with e-mail address A is derived from the value
stored in autocrypt_peer_state[A].

If the pah is null, or if pah.key is known to be unusable
for encryption (e.g. it is otherwise known to be revoked or expired),
then the recommendation is disable.

If the pah is not null, and prefer-encrypted is yes,
then the recommendation is encrypt.

If pah is not null, and prefer-encrypted is either no
or nopreference, then the recommendation is available.

Recommendations for messages to multiple addresses

For level 0 agents, the Autocrypt recommendation for a message
composed to multiple recipients is derived from the recommendations
for each recipient individually.

If any recipient has a recommendation of disable then the message
recommendation is disable.

If every recipient other than “myself” (the e-mail address that the
message is From:) has a recommendation of encrypt then the
message recommendation is encrypt.

Otherwise, the message recommendation is available.

Encrypt outbound mail as requested

As the user composes mail, in some circumstances, the MUA may be
instructed by the user to encrypt the message. If the recipient’s
keys are all of type=p, and the sender has keys for all recipients
(as well as themselves), they should construct the encrypted message
as a PGP/MIME (RFC 3156) encrypted+signed message, encrypted to all
recipients and the public key whose secret is controlled by the MUA
itself.

For messages that are going to be encrypted when sent, the MUA MUST
NOT leak the cleartext of drafts or other partially-composed messages
to the SMA (e.g. in the “Drafts” folder).

If there is any chance that the message could be encrypted, the MUA
SHOULD encrypt drafts only to itself before storing in any Drafts
folder on the SMA.

Specific User Interface Elements

Ideally, Autocrypt users see very little UI. They might never see any
UI at all by default. However, some UI is inevitable, even if only
tucked away in an arcane “preferences pane” or something.

Account Preferences

Level 0 MUAs MUST allow the user to disable Autocrypt completely for
each account they control.

If Autocrypt is enabled for a given account, the MUA MUST allow the
user to specify whether they explicitly prefer encryption for inbound
messages, or explicitly prefer cleartext for inbound messages, or
choose to express no preference. The default SHOULD be “no
preference” unless the MUA has good reason to know better.

Please see Example User Interface for Autocrypt for specific examples of how this might
look.

Message Composition

If an MUA is willing to compose encrypted mail, it SHOULD include some
UI mechanism at message composition time for the user to choose an
encrypted message or cleartext. This may be as simple as a single
checkbox.

If the Autocrypt recommendation is disable for a given message,
the MUA MAY choose to avoid exposing this UI during message
composition at all.

If the Autocrypt recommendation is either available or
encrypt, the MUA SHOULD expose this UI during message composition
to allow the user to make a different decision.

E-mail Address canonicalization

Domain part (the part after the @):

Todo

We need to choose a canonicalization form for the domain side of
the e-mail address. There are risks for user presentation around
phishing with IDNs, which we should be careful about.

Local part (the part before the @):

SMTP specs say this part is domain-specific, and byte-for-byte
arbitrarily sensitive. In practice, nearly every e-mail domain treats
the local part of the address as a case-insensitive string. That is,
while it is permitted by the standards, John@example.org is very
unlikely to deliver to a different mailbox than john@example.org.
Autocrypt-aware MUAs will canonicalize the local part of an e-mail
address by making it all lower-case.

Todo

some people (and some e-mail domains) have known variations which
all deliver to the same account. For example, the mailbox that
receives john@example.org might automatically receive all mail
addressed like john-whatever@example.org. gmail today supports
arbitrary dot injection (e.g. johndoe@example.org delivers to
the same mailbox as john.doe@example.org). Do we want to try
to support these somehow? It would be simplest to declare anyone
using aliasing schemes like this as out-of-scope for Autocryptv1.

Todo

do we want to allow sophisticated users to explicitly merge known
shared aliases as long as the domain side stays the same? For
example, if i happen to know that jdoe@example.org delivers to
the same mailbox as john@example.org, can i declare that to an
Autocrypt-aware MUA? How would such an explicit merge affect state
management?

Potential ecosystem dangers of Autocrypt

This document is a place to describe particular concerns that Autocrypt
creates for the e-mail ecosystem as a whole. It does not address
attacks against the cryptography or compromises to the message
confidentiality it aims to support.

These risks may not be large risks, or they may be mitigatable in some
way, but we document them here for general awareness.

In all, we currently believe that the benefits to the ecosystem of
having more end-to-end message confidentiality outweigh these
potential risks.

Failures of Search

If Autocrypt clients are incapable of searching encrypted mail, users of
Autocrypt-capable clients may find e-mail less useful for normal
communication.

Message Deliverability

Autocrypt headers that use RSA 2048 are large enough that, when
unwrapped, they exceed the SMTP line length limit of 1000 ASCII
characters.

It’s conceivable that some MTAs or MUAs will choke upon trying to deal
with these headers, and render the message undeliverable or
unreadable. We have no evidence of this happening today (December
2016), but maybe we’re just not yet tickling the systems that have
these problems.

Possible mitigations:

	sending duplicate headers each with parts of the key data. But
this makes reassembly and message-parsing logic significantly more
complex, and it would be nice to not need it.

Denial of Service: malicious creation of unreadable mail

An active attacker who wants to interrupt communication between two
parties can do so if they know that one party uses an Autocrypt-capable
agent. Consider the case where Mallory wants to interrupt
communications between Alice and Bob, and she knows that Bob uses an
Autocrypt-capable client.

Mallory crafts a new key K. She can throw away the secret key
material entirely if she wants to. She then forges an e-mail from
Alice and adds an Autocrypt header to it containing that public key and
prefer-encrypted=yes. If Bob writes a message to Alice after
receiving that key, and before receiving any other legitimate message
to Alice, his message will be encrypted to a key that Alice cannot
read.

this represents a risk to Alice, even if she has never adopted an
Autocrypt-capable client in the first place.

Mitigations:

	Alice’s next mail to Bob will correct Bob’s client’s state so that
futre mails will be back to Alice’s actualy preferred state. So
the attacker must sustain a series of forgeries if the denial of
service attack is intended to be sustained.

	we should specify that any spam/malware flag set from a filter that
the user trusts should be sufficient to discourage processing of
Autocrypt headers, so that Mallory needs to craft a
sufficiently-plausible message (including DKIM and whatever other
indicators the filters care about) to make it into the
Autocrypt-capable agent’s internal state storage.

Killing off strong encryption

Autocrypt is significantly weaker than traditional models of mail
encryption. In particular, it provides no resistance to an active
attacker (an attacker who can modify and/or inject mail as it passes
through the SMTP network). The no-UI feature makes it so that most
users will never properly verify each other’s encryption keys.

There is a concern that if opportunistically-encrypted mail becomes
the standard, no one will bother to implement good UX for users in strong
identity verification.

Mitigations:

	make out-of-band verification of keys between users
fun and thus increase the risk for attackers to get detected.

	research how “level 2” Autocrypt could evolve to offer
automated support against active attackers.

A note on Autocrypt and provider spam/malware filters

Mike Hearn raised some fundamental concerns in his Modern anti-spam
and E2E crypto post on the modern crypto mailing list [https://moderncrypto.org/mail-archive/messaging/2014/000780.html]
on how end-to-end encrypted mails and spam infrastructure possibly
interfere. While we may conceive new ways to fight spam in an E2E
setting by increased DKIM usage and other additional measures
the topic is a serious one as adoption of more encrypted mails
could be seriously hampered if encryption can bypass current
anti-spam technology.

Autocrypt works with existing provider Anti-Spam infrastructures
because they can continue to check the initial cleartext mails for
suspicious content. Only if a user replies to a (likely non-spam) mail
will Autocrypt make a MUA send an encryption key. Without being able to
get sufficiently many replies from users it will likely be to
massively harvest encryption keys; there is no central registery for
key-mail address relations. Massive collection of key/mailaddress
associations would require co-operation from or compromise of big mail
providers which is unlikely given they have been fighting unsolicited
mails for decades and their business models depend on it.

Interoperability With Other Cryptographic E-mail Mechanisms

Many MUAs that aim to become Autocrypt-compatible will already have
implementations of other e-mail encryption mechanisms.

We have concrete guidance for those MUAs that we hope is useful.

Message encryption recommendations

An Autocrypt-capable agent that also incorporates the OpenPGP “Web of
Trust” might already know about a non-Autocrypt public key that it
considers to be correctly bound to the recipient e-mail address. It
may wish to prefer such a key, and to decide to use for a given
outbound message over any recommendations provided by Autocrypt.

For current OpenPGP users

	What about other keys, that i have been using with other properties?
(smart-card, RSA, ...)
	You can still create a compatible header with a tool we will
provide. We are targeting users who have not used pgp
before. Nevertheless most clients will still support other key
formats. But they are not required to.

Todo

More guidance here!

Interoperability with existing PGP practises

should Autocrypt keys appear on key servers?

	no!

should i add rcvd Autocrypt keys into my PGP keyring? (if my mua already supports PGP)

	yes

should my own Autocrypt keys appear in my keyring?

	no
(why not? how else can we do encrypt-to-self, or message signing?)

can I put my regular pgp keys into Autocrypt?

	MUAs should not provide UI for importing keys for Level 1

	allowed for Level 0 to get traction early on (as replacement for keyservers)

can I use someone’s pgp key that i have for encrypting mail to that person?

	This would work like without Autocrypt

if i have for a person an non-Autocrypt pgp key and an Autocrypt key, which one do
i use to encrypt mails for that person?

	Look up e-mail address in pgp keyring

	if there is a key that has better user ID validity for the matching address than “unknown”, use that one

	else look up a key from the Autocrypt state (which is also in the keyring)

two target audiences:

	end-users

	mail software devs

Frequently Asked Questions about Autocrypt

Why are you using headers rather than attached keys?

Attachments are visible to users of non Autocrypt-compatible MUAs,
while headers are not. We don’t want to present distracting or
confusing material to those users.

Why are you sending keys in all the mails and not just announcing capabilities?

We did this in a previous version. We decided against it because it
requires the MUA to keep the information who announced Autocrypt and
who they requested keys from.

Why are we using IMAP folders rather than self send messages for multi device?

Self send messages end up in your inbox and might be confusing to
users. They are likely also processed by your spam protection and
might look like spam.

Why do you aim to use ed25519 - it’s not supported by X?

They give us much smaller keys that lead to smaller headers and make
it easier to include them. You can even write them down as a backup
code. We want to support implementation where needed.

So you say you care about header size... but then you type out prefer-encrypt?

An ECC key is roughly 500 bytes formated in Base64 and RSA 2048 key is
1750 bytes. The Length of attribute name does not matter so much. So
we opted for readability.

Why do you drop all headers if there is more than one?

Because of multi-agent usage we may have to handle an inconsistent stream of
headers already. Making this an inconsistent stream of multiple keys with
priorities sounds like a lot of pain.

What if I want two different keys announced?

If you really care about supporting other keys than what we use in
Autocrypt there is the OpenPGP header that could use some standardization and
automatic client support. Feel free to innovate there.

If we want to enable multiple headers in the future we can still add Autocrypt
headers with a critical attribute ‘priority’. Versions that do not support it
yet will drop these headers and fall back to the one without priority.

Why do you use the to= attribute rather than the uid from the key?

We need to store state about the key to use for a given e-mail
address. Just importing the key into a keyring won’t cut it.

We want to be able to handle the header without having to parse the
key first. We believe that using the ‘to’ attribute will be more
forward compatible. For example we discussed hashing the uid in the
keys so in case they leak to pgp keyservers they do not leak the e-mail
address. This would not be compatible with requiring the e-mail address
as the uid.

How does Autocrypt interact with message signing?

In general, Autocrypt assumes that mail is either plaintext mail, or
it is both encrypted and signed. This assumption makes it possible to
create a simpler user experience.

While there are valid usecases for signed, unencrypted mail, or for
encrypted, unsigned mail, they are not the use case targeted by
Autocrypt.

Why use OpenPGP and PGP/MIME instead of some other encryption tech?

We picked a commonly-understood and implemented mail encryption
technology so that implementers wouldn’t need to start from scratch.

Future levels of the Autocrypt specification may support different
encryption technologies, but the main immediate goal is to get wider
adoption, not to re-invent the encryption mechanism itself.

Please see key-formats for more discussion.

Why don’t you use the User-Agent header to detect different mail apps?

Not all mail apps implement the User-Agent header (and there is an
ongoing effort to discourage its use as a way to reduce metadata
leakage). Also, some mail apps are used only to read mail, and are
not used to send at all, so the remote peer can’t see anything about
those specific apps.

We could encourage each MUA to publish a UUID to inform the remote
peer that multiple mail apps are in use, but it’s not clear that this
offers much benefit, and it leaks information that we don’t need to
leak.

What about spammers accidentally downgrading encryption?

A spammer who forges mail from a given address could potentially
downgrade encryption for that person as a side effect. Please see
level0/public-key-management for details about expected interaction
with spam filters.

How does Autocrypt interact with today’s mailing list managers?

Mailing lists that distribute cleartext (unencrypted) mail may end up
distributing their user’s public key material in the Autocrypt:
headers of the distributed mail. For mailing lists that rewrite
From: headers, these Autocrypt: headers will be dropped by
recipients, which is fine.

For encrypted mailing lists like schleuder [http://schleuder2.nadir.org/], we haven’t done a full analysis yet.
Suggestions welcome!

Why don’t you encourage gossiping keys of other users?

This is a plausible future improvement for Autocrypt. But being
willing to accept gossiped keys for other users presents a more
complicated and risky public-key state management situation for the
receiving client. For example, what if one client gets multiple
different keys for a target address from different gossiping peers –
should the client encrypt to all keys or just some? How should those
keys interact with keys received from the end peer directly? Because
of these complications, we’re sidestepping this problem for level 0.

We welcome drafts proposing sensible ways to manage key gossip in
group e-mail communication for future levels of Autocrypt.

Why can only one Level 0 MUA to “claim” an e-mail account for Autocrypt?

In the event that two Autocrypt-enabled agents operate a single
e-mail account, they could clash and cause serious usability problems.
In particular, if they each manage their own secret key material,
communicating peers might arbitrarily choose one key or another to
encrypt to, and then certain mails will be unreadable with certain
agents, in an apparently-arbitrary pattern based on the origin of the
remote peer’s last-received message.

So we need either synchronization between Autocrypt agents on a single
account, or there needs to be only one such agent on a given account.

For level 1 and higher, we aim to provide a synchronization mechanism
so that all Autocrypt-enabled MUAs connected to a single account are
capable of reading encrypted mail.

For simplicitly, level 0 does not require or define synchronization
mechanisms, but instead allows an Autocrypt-enable client to “lock”
the account so that multiple Autocrypt-enabled clients don’t end up
sending different keys.

Todo

Describe the tradeoffs and workflow for level-0 agents sharing an
account with future level-1 clients, or failure modes (e.g. lockout
by an agent you no longer use)

Why do you clamp Date: to the current time?

E-mail messages with Date: in the future could destroy the ability
to update the internal state.

However, since different MUAs view messages at different times,
future-dated e-mails could result in state de-synchronization.

Todo

deeper analysis of this state de-sync issue with future-dated
e-mails, or alternate, more-stable approaches to dealing with wrong
Date: headers.

Why do you always encrypt-to-self?

Users expect to be able to read their outbox or Sent Messages folders.
Autocrypt should not get in the way of that.

Why did you choose the raw e-mail address for the user ID?

Possibilities for uid we considered:

	Option
	SC
	BC
	VO
	RvK
	SR

	no uid
	
	
	
	x
	x

	e-mail
	x
	x
	x
	x
	

	fixed
	
	
	x
	x
	x

	hash
	x
	
	x
	x
	x

SC: self-claim. This was very important to us for usability
reasons. This restricted us to either use the e-mail directly or
hashed.

BC: backwards compatibility

VO: valid OpenPGP

RvK: allows revocations using keyservers

SR: Spam resistant/publicly list e-mail addresses

Using a salted hash of the e-mail address for the uid to not list them
on keyservers would prevent the privacy issue of public mail addresses
but the key should not be uploaded in the first place.

Accidental or malicious uploading of keys with associated e-mail
addresses should be prevented by introducing a flag at the keys that
says that keyservers shouldn’t accept it. See issue #1 [https://github.com/autocrypt/autocrypt/issues/1].

Why RSA2048 and not 25519?

Curve 25519 keys are shorter, cheaper to compute on, and likely to be
stronger than RSA 2048 against non-quantum attackers. However, we
want level 0 to be implementable in late 2016, and more toolkits
support RSA 2048 than 25519. Future versions are likely to encourage
25519 over RSA 2048.

Example User Interface for Autocrypt

Glossary

	MUA

	Mail User Agent.
Any program/client/app that handles e-mails for the end user.

	MUAA

	Mail User Agent Account.
The data/state a mail user agent holds for a specific account.
When synchonizing autocrypt data, we have to synchonize MUAA data
(data held by different MUAs for the same account).
See Shared MUAA Messaging Archive

	SMA

	Shared MUAA Messaging Archive.
See Shared MUAA Messaging Archive

Future Enhancements to Autocrypt

Please see Guidance for Implementers of Autocrypt Level 0 for information about Level 0 requirements.
Here, we document future improvements, which we hope will be
incorporated in Level 1, or possibly some later Level. This is an
unordered list. If you have ideas about how to address one of these
points, feel free to jump in! (but let’s try to stay focused on
getting Level 0 stable before we invest too much energy in these next
steps)

Expiry

Todo

We need documentation about sensible key expiry
policies. Autocrypt-capable clients that choose to have an expiry
policy on their secret key material should use message composition
as an opportunity to refresh their secret key material or update
the expiration dates in their public certificate.

Client sync

Please see Shared MUAA Messaging Archive

Todo

We need to specify how to sync internal Autocrypt state between
clients. We want to be able to sync the state without sending sync
data for every message processed, while we also want all synced
peers to have the same internal state as much as possible. We
currently believe that syncing updates to pah and changed
should be sufficient, and that peers do not need to sync
last_seen. This has not been proved in practice.

New Types

Todo

how to deal with multiple types (at least when a new type is
specified). When we support types other than p, it’s possible
that users will have multiple keys available, each with a different
type. That seems likely to introduce some awkward choices during
message composition time, particularly for multi-recipient
messages.

X.509 and S/MIME

Todo

Someone is bound to ask for this as a “key type”

Deletable (“forward secure”) encrypted mail

Todo

Given the Autocrypt infrastructure for key exchange, there’s no
reason we couldn’t define a mechanism for pairwise, ratcheted,
session-key establishment for e-mail.

RSA2048 to Curve 25519

Todo

Document change in preference for keys from RSA 2048 to Curve 25519.

Backups

see Autocrypt Secret Key Backup

Todo

We need guidance on how backups might be done safely.

Guidance on masking Key IDs

If any recipients are in Bcc: (rather than To: or Cc:), and the
key types used are all OpenPGP (type=p), then the agent SHOULD mask
the recipient key ID in the generated PKESK packets that correspond to
the Bcc’ed recipents. It does not need to mask recipient key IDs of
normal recipients.

Masking of Key IDs is done by setting the key ID to all-zeros. See
the end of section 5.1 RFC 4880 for more details. Users of GnuPG can
use the –hidden-recipient argument to indicate a recipient who will
be masked.

This is so that the message encryption does not leak much additional
metadata beyond what is already found in the headers of the message.
It still leaks the number of additional recipients, but the additional
work and usability issues involved with fixing that metadata leak
suggest that it’s better to leave that to a future level.

Encrypted headers

Todo

Document interaction with encrypted headers: if something like
memoryhole ever makes it possible to hide normal To: and Cc:
headers, then we need to rethink our approach to handling PKESK
leakage further.

Webmail

Todo

How does Autocrypt interact with webmail? Can we describe hooks
for webmail and browser extensions that make sense?

Search

Todo

Guidance for implementers on dealing with searching a mailbox that
has both cleartext and encrypted messages. (session key caching,
etc)

Gossip (or “introduction e-mails”)

Todo

Can we specify a sensible practice for passing around keys for
other people that we know about?

Or maybe it’d be simpler to define a standard workflow for
“introduction e-mails”, where the sender tells multiple recipients
about the keys she has for all of them.

Out-of-band key verification

Todo

Can we specify a simple, user-friendly way that Autocrypt users can
confirm each others’ “Autocrypt info” out of band?

If we do specify such a thing, what additional UI/UX would be
required?

Heuristics for dealing with “nopreference”

Todo

in Level 0, the Autocrypt recommendations for composing mail to a
remote peer with prefer-encrypted set to nopreference look
very much the same as the recommendations for when
prefer-encrypted is set to no. But different heuristics
could be applied to the nopreference case for MUAs that want to
help users be slightly more aggressive about sending encrypted
mail.

Documenting reasonable heuristics for MUAs to use in this case
would be very helpful.

Autocrypt Secret Key Backup

This is for Autocrypt Level 1 or later...

The MUA generates a strong “backup code” and gets the user to write it
down somewhere. Then it serializes its secret key material into a
message encrypted by the the backup code. This message is given a
custom header and is sent to the account in question:

Autocrypt-Secret-Key-Backup: key_backup_data=<encrypted_secret_key>
From: alice@example.net
To: alice@example.net

Todo

should the MUA store the message in the SMA, or store it to file or
what?

Restore

Todo

Fill in here

Prompting the user for backup code?

Note also that the backup code MUST be strong – it is subject to
brute force attacks by anyone who holds a copy.

Backup and Sync

Todo

say something about the relationship between backup and sync

Cleanup needed

RFC 2231 talks about the elements of a MIME header as “parameters”
instead of “attributes”. RFC 2045 specifies the same vocab. We
should normalize.

Let’s use “cert” where we mean “cert” and “key” where we mean “key”

need a tight document for what is expected of level 0 clients
(level0.rst).

user-facing material probably should use “app” – for technical
documentation, we need to settle internally on “agent” or “client” or
“MUA” or “MUAA”

glossary for technical documentation.

Shared MUAA Messaging Archive

characteristics/requirements of of what SMAs need to provide:

	a SMA can be implemented on top of IMAP commands

	is used to synchronize states between MUAAs. We use “MUAAs” to
indicate a particular MUA/Account combination because synchronization
happens betweens accounts managed by different MUAs.

	is used to send and receive messages between MUAAs (concurrently),
for example pairing requests, initial Autocrypt setup (of first MUAA),
updates to received remote Autocrypt encryption keys.

	A MUAA needs to be able to detect if there is any other MUAA

	messages are not (neccesarily) human readable and don’t appear in the
regular inbox.

	probably: size of SMA should not grow linearly with number of
incoming/outgoing mails, for example messages that have been
processed by a MUA must be deleted

	there should be a policy/expiry of messages for MUAAs which don’t
exist/are not alive anymore

	we only require from IMAP servers that they handle first level folders
(subfolders are not neccessary)

	there is a header in the messages stored in these folders, indicating
that the message is an SMA message.

implementation on top of IMAP, pairing happy path

Let’s suppose we have a first MUAA. It doesn’t find an _Autocrypt_SMA
announcement folder so it will do the following:

	create a random new number “1” which we call MUAA-ID.

	create an _Autocrypt_SMA “announcements” folder and
append some MUAA description message, most notably
the MUAA-ID

	create an inbox folder _Autocrypt_SMA_1 where other
MUAAs will be able to send/drop messages.

If now another MUAA is added:

	create a random new number “27” as MUAA-ID.

	discover the _Autocrypt_SMA folder exists and read all
of its messages, discover that there is an 1 MUAA

	create an inbox folder _Autocrypt_SMA_27 where other
MUAAs will be able to send/drop messages.

	append a new MUAA description message to _Autocrypt_SMA

	append a pairing request message to the “1” inbox (_Autocrypt_SMA_1).

The MUAA “1” will then:

	discover “27” from the new message in the announcement folder _Autocrypt_SMA

	read the pairing request message from its own _Autocrypt_SMA_1 inbox

	process the pairing request and send a pairing accept message to “27” by appending
it to the _Autocrypt_SMA_27 folder.

	delete the pairing request message from its own _Autocrypt_SMA_1 folder.

Note

In this happy path example we are not prescribing the precise pairing procedure,
merely give an example how bootstrapping into a multi-MUA setting works.
It is unclear whether a centrally shared keyring as an IMAP folder is viable
(synchronization between MUAs, “merge conflict” between state, deleting
message might be a problem, encrypted “broadcast” to all my MUAAs)

Todo

Critically consider how the multiple Autocrypt folders show in user interfaces.
It might be better to depend on sub folders.

Todo

Crically consider end-to-end encryption for MUAA messages.

Todo

Consider how to force remove devices through IMAP folder deletion or something.

types of inter-MUAA unicast messages

Difficult to reason about when we don’t know what we really want to do
(cryptographic protocol wise)

ID announcement

pairing messages

	Some authenticated key exchange so later messages between MUAAs can be encrypted

	Shared private key so messages encrypted to the account’s public key
can be encrypted and outgoing mail can be signed

remote key updates

	notify other MUAAs that you add to or change an entry to your keyring

Index

 R

R

 	
 	
 RFC

 	RFC 822

 _static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Current docs (work-in-progress)

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

